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Phase diagrams of aligned dipolar hard rods
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Perfectly aligned, long dipolar hard rods are shown to exhibit unusual phase behavior, induced by the long
range of the dipolar interaction in combination with the finite length of the particles. Three variants have been
considered(i) ellipsoids with central dipolegji) spherocylinders with central dipoles, afiil) spherocylin-
ders with dipoles placed at regular intervals along their axes. In all cases, the dipoles are taken to be pointlike
and directed longitudinally. At sufficiently low temperatures, coexistence between fairly low-density phases of
similar structure has been found, which terminates at a critical point. Our results shed some light on recent
simulations of dipolar soft spheres in a strong field, which separate into two “gas” phases of ordered, rodlike
chains: Accord is semiquantitative in cggig) and qualitative in casd$) and(ii). Relaxing the assumptions of
perfect order and molecular rigidity worsens agreement somewhat, but otherwise leads to no substantial
changes. Possible refinements of the theory are discySEd63-651%98)12702-2

PACS numbes): 61.20.Gy, 75.50.Mm, 64.76p

[. INTRODUCTION vapor (LV) coexistence identical to that due to dispersion
interactions. Most subsequent theoretical treatments made
One might reasonably expect that after more than 4@he same predictiof22—30, which seemed to be confirmed
years of intense research into the structure of classical fluidgy early simulation evidencg31]. Recent numerical work,
at least the phase behavior of the most basic models therebbwever, has failed to find LV equilibria for either dipolar
should have been fully understood. That this is not the casbard sphere@DHSs or dipolar soft spheredSSs [32-34].
has been amply demonstrated by the recent spate of interdsistead, at low densities dipoles tend to associate into chains
in the demixing of hard spher¢$,2] and hard rod§3—7], as  akin to living polymerg33—-36. That they should do so can
well as in the mechanisms whereby the range of the attrage readily understood in terms of the structure of the full,
tive part of the intermolecular potential can stabilize differ- angle-dependent, dipole-dipole potential: The head-to-tail
ent phase equilibria in simple liquid8—13. geometry is actually the most favorable, with an energy
However informative hard bodies may be, they by nominimum twice as deep as that of the next-most-favorable
means exhaust the abundant issue of nature’s design or efnfiguration, namely, two antiparallel dipoles. For suffi-
human ingenuity. Indeed, just as common as the shortzjgnyy jarge dipole moments, this difference gives rise to
ranged overlap forces that they mimic is electric charge an ery anisotropic short-range correlations, whence comes

he?niznm#tlt'p?:;dimope?tshi Thhle lntrgr?c)t(logh:)eitwsecmenn chaining[37-39. It is precisely such strong short-range cor-
be ent po poles IS nighly compiex. This IS a conse relations, present even at low densities, that are missed when

quence of(i) its long range which produces subtle effects one performs angular averages of the potential, as is done, in
relating to system size and the nature of the boundary con- P 9 9 P ' '

ditions[14—19, and(ii) its very pronounceenisotropyand one .form or anqther, in most Fh_eori@ee[%] for a more.
especially the strong coupling between the orientations of etailed discussion of these difficulties and how they might

pair of dipoles and that of the interdipole vector: Two paral-°€ Overcomg The discrepancy between old and new simu-
lel dipoles will repel each other if placed side by side pytlation results, on the other hand, has been ascribed to the

attract each other if head to tail. smallness of the system simulated ear{i&0].

It follows that the phase diagram of dipolar fluids in gen- Because strongly dipolar spheres form chains and inter-
eral and ofstronglydipolar fluids in particular has remained chain interactions of dipolar origin are very weld@], some
largely uncharted. In 1970 de Gennes and Pirl@ ar- additional attraction between spheres is required to promote
gued, on the basis of Keesom’s Boltzmann-averaged, effed-V coexistence. Indeed, van Leeuwen and Smit have shown
tive (isotropig interdipole potentia[21], that a system of [33] that “conventional” behavior can be recovered by add-
hard particles with embedded dipoles should exhibit liquid-ing an isotropic attractive term to the DSS potential. They

simulated a variant of the Stockmayer potential, with a vari-
able ratioeg of the strengths of the attractive and repulsive
*Present address: Cavendish Laboratory, Madingley Roadparts of the Lennard-Jones componesnt=0 corresponds to
Cambridge CB3 OHE, United Kingdom. a DSS andg=1 to the usual Stockmayer fluid. In zero field,
'Permanent address: Institute of Crystallography, Russian Acad-V phase coexistence and no chains were found for
emy of Sciences, Leninski Prospekt 59, 117 333 Moscow, Russia€g=0.3. Later, Stevens and Grggtl] mapped out the LV
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phase diagram dimoderately polarStockmayer fluids with  be weaker than that of each of them with the field. Further-
or without an applied field. more, if the rods are long enough, the head-to-tail minimum
A minimum amount of isotropic attractive energy thus can be made very weak, even for very strong dipoles. Hence
appears necessary to stabilize equilibria between isotropiong polar rods do not form any chains or ribbons in a suf-
phases in zero field, at least in three dimensi@834,41. ficiently strong external field. It will be shown below that in
(Whether the same effect is present in a quasi-twothis case and under appropriate boundary conditions, the
dimensional model, remains an open questidd].) Yet long-range character of the dipole-dipole interaction gives
there are other ways to inhibit chain formation while retain-rise to an effective attraction between rods that depends on
ing the basic model of a repulsive hard or soft core plugparticle shapg47] and could be the driving force of the
dipolar interaction. The simplest of these is to decrease thmstability of the homogeneous fluid relative to two phases of
depth of the head-to-tail energy minimum relative to thataligned rods. Clearly, the effect should be qualitatively the
corresponding to antiparallel dipoles by stretching the sphersame for all rod shapes and all distributionglohgitudina)
into a rod along the direction of the dipole moment. Mc- dipoles therein, but as we shall see, quantitative differences
Grother and Jackso#3] have simulated a fluid of dipolar can be important. We argue that the same effect should be
hard spherocylinders and found an island of LV coexistenc@resent in the system of ordered dipole chains.
when the two minima are nearly equal, i.e., for length-to- In this paper we investigate the above scenario and dis-
breadth ratios 0.18L/D=<0.27 (they are equal forL/D cuss its relevance to the phase separation of the DSS fluid in
=218_1~0.26) [44]. Longer spherocylinders again form an applied field. In Sec. Il we present our theory and stress
chains, or rather “ribbons,” where nearest neighbors arghe need for a correct choice of boundary conditions when
now approximately antiparallel. This suggests that oncealealing with electrostatic forces. Section Ill contains our re-
chaining is suppressed by making the interaction potentiasults for the fluid phase equilibria ¢f) hard ellipsoids with
“less anisotropic,” phase separation comes into gaynore  central dipoles(ii) hard spherocylinders with central dipoles,
detailed investigation of the competition between phasend (iii) hard spherocylinders with equispaced dipoles along
separation and aggregation in the DHS fluid is reported irtheir long axes: Although the qualitative picture is the same
[45)). in all three cases, there are important quantitative differ-
Coexistence between low-density phasesmieredDSS  ences. In particular, we shall argue tki@) is relevant to the
chains without additional attraction does nonetheless obtaiproblem of the phase behavior of DSSs in a field and that
if a strong field is appliedl46]. This phase separation is very relaxing the assumptions of perfect orientational order and
unusual is several ways. First, in contrast to LV equilibria,infinite particle rigidity leads to no substantial changes. Fi-
the (reduced densities of the two phases are close and vennally, in Sec. IV we conclude with some critical remarks on
low, p*~0.02—-0.03. Moreover, their structures are alsoour models and approach, as well as their relation to real
similar and resemble a gas of fairly ordered dipole chainsferrofluids.
We propose that the behavior of such a system can be quali-

tatively understood using a simple model of long dipolar Il. THEORY
rods. A dipolar chain in a strong field is similar to a r@dth _
some flexibility perhapswith dipoles distributed along its A. General formulation

axis. Thus we arrive at the simplest model of perfectly The interaction potential between two point dipoles em-
aligned dipolar hard rods that still preserves the main qualihedded in hard rodéHRS) is

tative features of the actual system of ordered dipole chains.

Now let us consider the possibility of phase separation in D (X1,X2) = Drei( X1 ,X2) + Pga(X1,X2), D
a fluid of strongly dipolar rods in a strong external field. As
mentioned above, without a field the rods form ribbons withwhere x; denotes the set of position and orientationa,
antiparallel nearest neighbors. However, there will be a criti-coordinates of particle, ¢,.(X1,X>) is a short-ranged refer-
cal field that destroys the ribbons because even at short disnce potential incorporating the effects of steric repulsion,
tances the interaction between two antiparallel dipoles willand

2

m = - ~ ~
— —[3(My- Up) (My-Ugp) —My-My]  if Fypé Vel o1,
Dad(Xq,X0) = riz[ 1-Up2)(My-Upp) —Mmy-my]  ifry, dw1,07) o

0 otherwise

is the dipole-dipole interactiof8]. In Eq. (2), m;=m, /m is Flp(x)]=Fed p(X) ]+ Fgil p(X)], 3
a unit vector along the dipole momemt, of particlei, u;,

=r4,/r 15 iS a unit vector along the intermolecular axis, and

Ved w1,w5) is the excluded volume of the two particles. In whereF { p(x)] is the FE of a fluid of density(x) char-
the spirit of perturbation theory, the free enef@¥) can be  acterized by the pair potentig{(X;,X;) andF g p(X)] is
written as the dipolar contribution.
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The natural reference system is the fluid of nonpolar HRsSng on system size, shape, and boundary conditions. This is
whose FE we approximate by the Parsons-Lee expressiaccomplished, as in our previous papg39,47), by simply
[49,50. This is formally a partial resummation of higher- adding to and subtracting from E¢b) the integral of the
order terms in the virial expansion of the FE and has beewlipole-dipole interaction without the steric cutoff, whence
tested recently against extensive computer simulations aoffe obtain
hard spherocylinderdHSC9 of L/D<5 [51] and hard ellip-

soids(HEs) of 5<L/D=20[52]. Agreement is nearly quan- 1,, n 1—3(uj; .2)2 _

titative, even at high densities, for the former and good for fdip=§p m Z r—g[H(rij —Ejj)—1] drj;
the latter. For very largé./D, the Parsons-Lee expression hi=1 1]

reduces to Onsager’'s second-virial approximation, which is 1

known to be asymptotically exact for the isotropic-nematic - Vf E-Pdr+oy | P-(E-Ep) dr, (6)

transition densities in the limiL/D—« and correctly de-

E?;'EE;’IEQ% transition in that limit, as shown by Bolhuis andwhereEo is an external fieldE is the field in the medium,

andP= pmi is the polarization. These quantities are related
by E=Eq—47DP, whereD is the depolarization factor.

Next, we need to specify the boundary conditions, which

A reasonable simplification that nevertheless preservem a real experiment can be imposed by placing the sample
the essentials of the problem under study is to assume perfelsetween the plates of a capacitor. Three possibilities now
orientational order. This is common practice wheneverarise. First, one may merely connect the plates together; the
strong alignment is expected as in, e.g., studies of thelectric potential is uniform throughout the sample aad
nematic—smectié: transition[54]; we shall see below how =0. This is equivalent to “embedding the sample in a con-

B. Perfectly aligned hard rods

it can be relaxed. We thus have ducting medium” sinceEy=4=DP, i.e., the sample polar-
izes in such a way as to cancel the external field everywhere.
fo gt (A3 4¢-3¢2 4 Second, one may apply a constant potential difference to the
Blrer=B~ =pIN(A°p)—p+p (1-¢2’ ) plates by connecting them to the poles of a battery. This

corresponds to fixinge inside the sample, bug, is now

whereV is the volume of the systemy is the density,3 unknown, as charges flow_ between the battery and.the ca-
=(ksT) "%, A is the de Broglie thermal wavelength, a#d pacitor plat_es to ke_ep the field constant after the medium has
—vump i the packing fraction, withy g the volume of the been polarized. Th|rd,' one can dlsc_onnect the plates a_nd put
HR. Note that this is exactly the same as the free energy©®Me charges on thefim practice, adjust some external field

density(FED) of a fluid of hardsphereof the same density. >°Urces outside the samplen which case, is fixed, bute
The dipolar interaction between rods is most easily takefS Unknown, because it depends on what is going on inside
into account in the mean-fieldF) approximation. Since we 1€ sample. By definitiorg, is produced by external charges

are dealing with a polarized fluid, the MF contribution to the @t aré not part of the material, i.e., it is the field that would
FED does not vanish. It is, in the caseroidentical longi- exist at a given point if the dielectric sample were removed.
tudinal dipoles per rod ’ It is important to stress that for a sample of arbitrary shape,

one cannot fix simultaneousky and E,,.
1 n 1-3(u; -2)?2 Following Z_hang and Widon55] and Groh and Dietrich
f gip= 5 p?m? D —3”H(rij — ;) dry, [56], we consider a needle-shaped sample, for wichO
2 ij=1 Fij and a uniformly polarized state is allowed in zero applied
(5)  field, and embed it in a conducting medium. N& 0 and
the last two terms on the right-hand side of E). vanish.
whereH(X) is the step functiofiH(x) =1 if x<0 and zero  The first term, however, is important since it represents an
otherwisg, r;; is the vector connecting thiéh dipole inrod 1 effectiveattractionbetween rods. This is an integral over the
with the jth dipole in rod 2,r;;=|r;;|, ujj=r;;/ri;, zis the  excluded volume of two parallel rods. We shall consider
unit vector in thez direction, which we have taken to be three different geometries.
along the long axes of the HRs, a@; is the distance of (i) Long HEs of major axis L and minor axis D with
minimum approach between the centers of two HRs. Thisentral point dipoles (HE,1)oye= (7/6)DL?. From[57] we
last quantity is a function of the relative orientation of the get, in the limitL/D>1,
intermolecular vector and of the direction of alignmémt
Eij:Eij(uij'Z)- o fz'iE'l~—8—7Tp2mZE. 7
At this stage, the reader’s attention is drawn to the fact P 9 L
that the particularly simple forms of Eg&}) and (5) are a
consequence of the assumption of perfect orientational order. (i) Long HSCs of length L and diameter D [44] with
In general, the FE is functional of the orientational distri- central point dipoles (HSC,1)The excluded volume is now
bution function(ODF) describing the degree of alignment of a spherocylinder of length |2 and diameter D:
the system and minimization with respect to the ODF isvysc=(w/6)D3+ (7/4)LD?. Evaluation of the integral in
therefore also required. We shall return to this point later. Eg.(6) (with n=1) then proceeds as follows. Start by noting
It is convenient to separate the dipolar contribution to thethat the interaction between two dipolas, and m, has a
FED, f4p, into short- and long-range parts, the latter dependéivergence structure; indeed, it can be written in the form
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My - My —3(My - Ugp)(My- Uso)

ro

Upp- My
=V. ( —Mm—
EP)

bada(12)=

=V-X. (8

This can be transformed into a surface integral using Gauss’

theorem. In particular, for spherical particles with=m,
=m||z, it reduces to

f d(cos9)f d¢ (s-m)(uyp-m)=27m flldx X2

=3m 9

where s is the surface normal,& ¢) are the usual polar
coordinates, and we have used the fact thgt m=s-m
=co, asu;j|s. The familiar result— (47/3)P? is thus re-
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FIG. 1. Elongation dependence of the geometric part of the di-
polar contribution to the FED of a fluid of HSCs with=L/D+1

covered. Now consider two aligned HSCs with dipoles atdipole moments along their axé§>°" [see Eq(17)]. The dashed

their centerss- X=0 on the cylindrical part of the limiting

line is the conjectured asymptotic behavigfL/D — ) =9/4 and

surface becaus¥||m, and we are left with the integrals over the asterisk is the result for sphet&60)=4/3.

the two hemispherical end caps. Their sum equals

477(2D)2f1d(cos9) (ssm)(l-m)l 3, (10
0

—2,n/2—1, whereas ifn is odd, thené{,=kD andk=—(n
-1)2—(n—=21)/2+1,...,(h—1)/2-1,(n—1)/2. The re-
sulting expression forfgo®" has been derived using

MATHEMATICA ; as it is extremely long and complex for large

where | is a vector from the center to the surface andn, we do not give it here but instead write it in the form

12=12=(2L)?+ (2D)?+2(2D)(2L)coss, m-1=m(2L
+2Dcog). In the limit L/D>1, Egs.(6) and (10) yield

SC D 2
H
f i e — szmz(t) .

11

T
fan "= Epzmz]-'(L/D) (17)

and discuss the behavior {(L/D) below.
In all three casesf;, is negative hence for sufficiently

(i) Long HSCs of length L and diameter D, with n strong dipoles, the attraction contributi¢hl) can be larger
=L/D+1 dipole moments placed at intervals D along their thank, T and bring about separation into two pha¢di-
long axes (HSC,n)The excluded volume is again a sphero-id” and “vapor”) of aligned dipolar HRs. In Fig. 1 we plot

cylinder of length 2 and diameter P. This is the same as

in the preceding case, except that we need to sumioaerd
j from 1 ton in Eq. (6) and instead of Eq10) we have for
each pair of dipolesi(j),

1
ZW(ZD)ZJO d(cos) cosficosx, |73

1
+277(2D)2J d(cos9) cosfcos_ 13, (12
0
where
cosw, =2L+§&— ¢+ Dcod, (13
cosy_=2L—§&+ ¢+ Dcod, (14

L=[(2L+&—¢)?+4D?+4D(2L + & — &) cost]
(15

|_=[(2L—§&+£)?+4D2+4D(2L — &+ &) cost] M2
(16)

If the number of dipoles in a HS@=L/D+ 1 [44], is even,
then ¢,=(k+1/2)D, with k=-n/2,—n/2+1,...n/2

F(L/D) vs L/D; note that, whereas in cas@$ and (ii) the
dipolar contribution to the free energy tends to zerd 43
increases, in cas@i) it approaches a constant value.

The full FED is nowf = f o+ f,, wheref, is given by
Eqg. (4) and fg, by Egs.(7), (11), or (12), as appropriate.
There are only three independent parameters, namely, the
packing fraction ¢, the dimensionless dipolar strength
pm?/kgT, and the anisotropy of the HR/D. An instability
will set in when %f/9p?>=0, which yields, foré<1 (low
densitie$ andL/D>1 (long thin rods,

1+8~—)\( ) (HE, 1), (18
D 3
£t 8~8)\(E) (HSC,2), (19
D
& 1+8~4N TF(LID)  (HSCp), (20)

where we have defined the reduced dipole moment
=m?/kgTD3. Remarkably, thé®/L dependence of the spin-
odal packing fraction is the same for both HEs and HSCs, in
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FIG. 2. Phase diagrams of aligned dipolar HEslid lines and FIG. 3. Phase diagrams of aligned HSCs wittb + 1 equally
HSCs(dashed lingswith central longitudinal dipoles. See the text spaced longitudinal dipoles. The asterisk is Stevens and Grest's
for details. simulation datunj46]. See the text and Table | for details.

spite of the different functional forms of EqS,) and(11). If, dependent excluded volume of two HSCs. Although
e.g.,é~0.1 andL~5D, the above conditions are fulfilled by numerically feasibld58], this is a rather cumbersome task;
taking N~210 (HE,), A~250 (HSC,), or A furthermore, we expect the degree of order to remain high, so
~0.2 (HSCnp). In all three cases the dipolar interaction en-we just replacefCha'nn by fz'iﬁc'” [Eq. (17)], the same as for a
ergy in the head-to-tail configuratian?/L3<2kgT, is rela-  perfectly aligned fIUId.

tively weak and does not create chains. Note that it is im- For simplicity, we opted for using the simple Gaussian
mensely more favorable to use a spherocylinder carrying approximation of Odijk for the ODF59], suitably adapted to
number of dipoles proportional to its length; for single cen-describe a fluid with polar order:

tral dipoles, the ellipsoidal shape is marginally preferable.

C. Effect of imperfect order and flexibility

In order to make closer contact with simulation, we need fo(w)= o 22
to take into account that the dipole chains seef4i] are 0 if 5<b<m,
neither perfectly straight nor perfectly ordered. This is most
easily done within our theory of “dipolar living polymers” \hereA is a constant and is the polar angle of». This is

[39]. Assuming all chains to be of the same lengtaL/D  reasonable in the limit of strong alignment, which we expect
+1, the FED of the spatially uniform fluid is notsame {0 be the case. Moreover, it has been shown that in this limit,

boundary conditions as in preceding subsegtion the resulting thermodynamics is very good, although the ex-
- 3 act ODF deviates substantially from the Gaussian functional
flp,f(w)]=kgTp[IN(A°p) —1]—kgTp(n—1)S, form [7,60]. Normalization then requireA= a/47 and we
I .
3nksTp (V. F ()2 also obtain
LY PNLALED, o
8A f(w) ata(6)
3 [ dot20 @3
_ w— =4a,
1=3¢ fa(6)
+n’kgTp?D° ———7
(1-¢)°

X . . T
X . A f doidw; fo(wy)|siny;lfe(w,y)= \[3, (24)
X | dwidw, f(wq)|siny;)f(w,)

gPpamn[p f(w)], (21 771:J dow Pl(COSH)’]EG(w)Zl—%, (25

where Sy=In[#D%xp(2)/18\%] is the energy of a chain

bond, f(w) is the ODF,y(12)=cos Yw;w,), and we have _f 2 .3

implemented the Parsons-Lee approximation to thew 72= | do Pa(cos)fe(w)=1 a’ 26
angle-dependenexcluded volume of two hard bodies. Cal-

culation of the dipolar (:ontrlbutlorffha'nn now involves in-  wheres; and 7, are the polar and nematic order parameters,
tegrating the dipole-dipole mteractlon over the orientation-respectively. The reduced FED is then
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TABLE I. Critical densities and critical temperatures for different particle elongations. The simufationdata are those pertaining to
the strongest field in Table | $#6]. Theory,rigid, refers to perfectly aligned HSCs; theory,flexible, refers to imperfectly aligned chains. See
the text for details.

L/D pe (sim) pe (theory,rigid pe (theory,flexible 7. (Sim) 7 (theory,rigid 7. (theory,flexiblg

5 0.0293 0.0347 0.058919 0.042057
10 0.0156 0.0169 0.035301 0.019352
20 0.00175 0.00804 0.00810 0.168 0.019506 0.008025

50 0.00328 0.00301 0.008312 0.002285
3 3nkgTap and Grest's in Table I. The density of chains, to be compared
f(p.@)=kgTp[IN(A%p)=1]—kgTp(N=1)So+ —4+——  with the HSC density in our system, is the density of par-

ticles reduced by/£=(L/D+1) 1. Taking £/o~20, we

1-2¢ [n =« predict a critical density about 5 times higher than seen in the
+ nszszDsw o gpzmzf(L/D)- simulations, while the reduced critical temperature is off by a

factor ~10. In view of all the approximations and simplifi-
(27)  cations involved, this is not discouraging. It is noteworthy
that 7. still goes down with increasind./D, albeit more
slowly than in the case of a single central dipole.
So far we have dealt only with the highly idealized system
Jr  4-3¢ r/s of perfectly rigid, perfectly aligned bodies. On physical

Minimization with respect tax yields

(28) grounds, one expects that unfreezing the shape and angular
degrees of freedom will render the two coexisting phases
more alike and also more difficult to order, thereby depress-
ing the critical temperatures and raising the critical densities.
This is indeed borne out by the theoretical treatment of Sec.

a=

8 "P1-¢?

whence we can write the equilibrium FED as

fF(0)=KaTolIN(A30)=11—KaTo(n—1 Il C; see Fig. 4 and Table (within the present theory, the
(P)=keTplIn(A%p) = 1]~ kg Tl 1% critical density is only weakly affectedYet it is important
337 . ] 4-3¢ N ) to realize that the approximations employed are only valid as
T33P (1-2)7 — 5 P"M F(L/D). long as the ODF remains sharply peaked, i.e.q@31 in

either phase. Because is a fast-varying function of the
(29 density[see Eq(28)], we find ourselves restricted to a rather
narrow temperature range around the critical point. The be-
havior of the orientational order parametejs and 7, is
. RESULTS illustrated in Fig. 5 for the same systems as in Fig. 4. Note
that the polar order parametey is always greater thag,,
Phase boundaries can now be calculated by equating pregs follows from Eqs(25) and (26), and was also found in

sures and chemical potentials; all results are in terms of thgimulations of the ferroelectric phase of DSE2,63 or
reduced densityp* =pD?3. Figure 2 shows the phase dia- DHSs[36].

grams of HRs withone central point dipole and elongations

L/D=5, 10, and 20(note the logarithmic-linear scale 0.050 .
Clearly, increasing the elongation destabilizes the phase
separated state and lowers the critical den&ky would be
expected from Onsager thedr§1]). This is consistent with 0.040 ]
the dipolar contribution to the FEEQ. (11)] going to zero as ‘

D/L—0. The critical and coexistence densities are lower in L/D=10 ‘
the case of HEs, reflecting the different scalings of the par- 0-030
ticles’ proper volumes. %

In Stevens and Grest's simulations, the dipole chains L/D=20
align along the field and are fairly straight if the field is 0.020 ¢
strong (Fig. 3 in Ref.[46]). We associate one such chain
with our model(iii), i.e., a dipolar HSC oftotal) length L 0010 | L/D=50
+D [44] of the order of the linear dimensiof of their \
simulation box, and diametdd = o, their molecular diam- | ;
eter, withn=L/D + 1 dipole moments placed at intervdls 0000 by <l K
along its axis and directed longitudinally. In Fig. 3 we 10 10
present a sequence of phase diagrams of this syé&tete
again the IOgarithmiC—linear scale and contrast with Fm 2 FIG. 4. Phase diagrams of aligned flexible HSC wiittD + 1
our critical temperatures,= 1/A. and densitiep; are com- equally spaced longitudinal dipoles. The asterisk is Stevens and
pared with Stevens Grest's simulation daturf46]. See the text and Table | for details.

10°
=1/A



1758 P. 1. C. TEIXEIRA, M. A. OSIPOV, AND M. M. TELO da GAMA 57

1.0 ‘ — o - ' two parallel rods at separatiddg; be of the order okgT,
3 LD=10 whenceD ¢4~ (8m?) 2. The resultingsmallereffective elon-
| gationL/D ¢ would shiftboth 7, andp? upward, as follows
08 | | from the trends in Figs. 2 and 3, and therefore not necessarily
improve the overall quantitative agreement. Still, the quali-
T ] tative picture would not change.
Third, we have replaced a string of spheres by their en-
L/D=5 veloping convex body and consequently neglected the atten-
l i dant short-range positional correlations. These do not seem
to play any substantial role in Stevens and Grest's simula-
tions, but have been invoked to explain the “chain bun-
. dling” phenomenon seen in simulations of ferromagnetic
particles[66,67] (which, however, occurs at much higher
densities,p* ~0.3). Indeed, Halsey and To§64,65 have
00 35 ‘ — e —_ — shown that the discrete character of the distribution of di-
10 10 10 I . . . L .
poles within chains gives rise to an attractive interaction that
decays exponentially with interchain separation.

FIG. 5. Orientational order parameteng (solid lines and 7, Finally, it is necessary to examine any relation that might
(dashed linesfor the same systems as in Fig[gee Eqs(25) and  exist between the coexistence of two phases of chains ob-
(26)]. served by Stevens and Grest and the paranematic-nematic

transition of semiflexible chains in an applied field investi-
IV. CONCLUSIONS gated by Khokhlov and Semeng&8]. It is known from the

We have investigated three different aligned dipolar hardvork of the latter authors that semiflexible chains will order
rod fluids and in all cases found a coexistence between lowaematically at a volume fractiogp~10(d/l), whered and|
density liquid and vapor phases that is driven solely by there, respectively, the diameter and the persistence length of a
long-range character of the dipolar forces. The transition irchain[69,70. This has been confirme@emiquantitatively
question is, in our theory, a consequence offthite length by recent simulations of off-lattice polymers in two and three
of the rods. The critical temperature. approaches either dimensiong71,72. However, the simulated phase equilibria
zero or a very small value ds/D—. Our predictions re- of chains occur at very low reduced densitiebspherey of
main qualitatively valid even if we allow for less-than- the order of 0.04. At such low densities, nematic ordering
perfect orientational order and molecular flexibility. The could only take place if the chains were much stiffer and
“phase separation in a field” recently seen in simulations ofmuch longer than they actually are. First, assuming, as be-
DSSs might then be explained as a finite-size effect: Thdore,d~ o, one can readily estimate the necessary chain per-
critical point would likely shift to lower and lower densities sistence length to be=2500, i.e., the chains must be fairly
on increasing the system size, which imposes an artificiastraight on the scale of the simulation box, which is not the
upper bound on chain lengths. Further evidence in this direccase[73]. Second, in the fluid of sufficiently stiff chains,
tion is provided by the fact that the number of chains con-phase separation in zero field is predicted, which is not ob-
tained in either of the simulation boxes is quite snjdb] served; this can only be understood if one assumes that the
(Fig. 3. chains become completely flexible on switching off the field,

However appealing the above interpretation may appear, which appears unlikely. Third, the width of the two-phase
number of points are in order. First, there is the question ofegion as calculated by Khokhlov and Semenov is about 10%
guantitative agreement between theory and simulation. Ousf the coexisting densities, whereas in the simulations these
theory overestimates the critical density and underestimatediffer by a factor of 2.(However, note that the two-phase
the critical temperature, even if the effects of chain flexibility region may broaden considerably once polydispersity has
and imperfect orientational order are taken into account. Thiseen properly taken into account, while the lower-density
suggests that there is an additional source of attraction iphase boundary would be left very much unchanged) In
operation. One likely candidate would be the fluctuation-view of the foregoing arguments, we have to rule out the
induced force of Halsey and Tod64,65: Being a one- possibility of spontaneous nematic ordering of the chains in
dimensional structure, a chain will experience strong fluctuathe system under consideration. We conclude that there is
tions due to instantaneous concentration or rarefaction of itaot, to our knowledge, any other, even qualitative, mecha-
constituent dipole moments. The coupling between the renism for the phase separation reported by Stevens and Grest
sulting fluctuations of the electric field in different chains than the one discussed in this paper.
gives rise to an energy of attraction. Note, however, that the The question remains of whether DSSs or dipolar HRs are
latter scales witlkgT and consequently canngter se yield  good models for real ferrofluids, which may exhibit a liquid-

a critical point. vapor coexistence even in the absence of an applied field
Second, we have treated the dipolar interaction in the ME75,76]; in view of the above, it is tempting to speculate that
approximation and thus forfeited a proper description of thesolvent effects, short-range interactions due to particle coat-
short-range repulsion between parallel rods. One way to takimgs[34], induced-dipole forces, or changes in particle shape

this into account would be to define an effective diameter of 55], may play a crucial role in the stabilization of such
a rod D¢ by requiring that the dipolar interaction energy of phase equilibria.

ZJ
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