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Phase diagrams of aligned dipolar hard rods
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Perfectly aligned, long dipolar hard rods are shown to exhibit unusual phase behavior, induced by the long
range of the dipolar interaction in combination with the finite length of the particles. Three variants have been
considered:~i! ellipsoids with central dipoles,~ii ! spherocylinders with central dipoles, and~iii ! spherocylin-
ders with dipoles placed at regular intervals along their axes. In all cases, the dipoles are taken to be pointlike
and directed longitudinally. At sufficiently low temperatures, coexistence between fairly low-density phases of
similar structure has been found, which terminates at a critical point. Our results shed some light on recent
simulations of dipolar soft spheres in a strong field, which separate into two ‘‘gas’’ phases of ordered, rodlike
chains: Accord is semiquantitative in case~iii ! and qualitative in cases~i! and~ii !. Relaxing the assumptions of
perfect order and molecular rigidity worsens agreement somewhat, but otherwise leads to no substantial
changes. Possible refinements of the theory are discussed.@S1063-651X~98!12702-2#

PACS number~s!: 61.20.Gy, 75.50.Mm, 64.70.2p
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I. INTRODUCTION

One might reasonably expect that after more than
years of intense research into the structure of classical flu
at least the phase behavior of the most basic models the
should have been fully understood. That this is not the c
has been amply demonstrated by the recent spate of int
in the demixing of hard spheres@1,2# and hard rods@3–7#, as
well as in the mechanisms whereby the range of the att
tive part of the intermolecular potential can stabilize diffe
ent phase equilibria in simple liquids@8–13#.

However informative hard bodies may be, they by
means exhaust the abundant issue of nature’s design o
human ingenuity. Indeed, just as common as the sh
ranged overlap forces that they mimic is electric charge
hence multipole moments. The interaction between~even
permanent point! dipoles is highly complex. This is a conse
quence of~i! its long range, which produces subtle effect
relating to system size and the nature of the boundary c
ditions @14–19#, and~ii ! its very pronouncedanisotropyand
especially the strong coupling between the orientations
pair of dipoles and that of the interdipole vector: Two par
lel dipoles will repel each other if placed side by side b
attract each other if head to tail.

It follows that the phase diagram of dipolar fluids in ge
eral and ofstronglydipolar fluids in particular has remaine
largely uncharted. In 1970 de Gennes and Pincus@20# ar-
gued, on the basis of Keesom’s Boltzmann-averaged, ef
tive ~isotropic! interdipole potential@21#, that a system of
hard particles with embedded dipoles should exhibit liqu
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vapor ~LV ! coexistence identical to that due to dispersi
interactions. Most subsequent theoretical treatments m
the same prediction@22–30#, which seemed to be confirme
by early simulation evidence@31#. Recent numerical work
however, has failed to find LV equilibria for either dipola
hard spheres~DHSs! or dipolar soft spheres~DSSs! @32–34#.
Instead, at low densities dipoles tend to associate into ch
akin to living polymers@33–36#. That they should do so ca
be readily understood in terms of the structure of the fu
angle-dependent, dipole-dipole potential: The head-to-
geometry is actually the most favorable, with an ener
minimum twice as deep as that of the next-most-favora
configuration, namely, two antiparallel dipoles. For suf
ciently large dipole moments, this difference gives rise
very anisotropic short-range correlations, whence com
chaining@37–39#. It is precisely such strong short-range co
relations, present even at low densities, that are missed w
one performs angular averages of the potential, as is don
one form or another, in most theories~see@39# for a more
detailed discussion of these difficulties and how they mi
be overcome!. The discrepancy between old and new sim
lation results, on the other hand, has been ascribed to
smallness of the system simulated earlier@40#.

Because strongly dipolar spheres form chains and in
chain interactions of dipolar origin are very weak@39#, some
additional attraction between spheres is required to prom
LV coexistence. Indeed, van Leeuwen and Smit have sho
@33# that ‘‘conventional’’ behavior can be recovered by ad
ing an isotropic attractive term to the DSS potential. Th
simulated a variant of the Stockmayer potential, with a va
able ratioe6 of the strengths of the attractive and repulsi
parts of the Lennard-Jones component;e650 corresponds to
a DSS ande651 to the usual Stockmayer fluid. In zero fiel
LV phase coexistence and no chains were found
e6*0.3. Later, Stevens and Grest@41# mapped out the LV

d,

d-
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57 1753PHASE DIAGRAMS OF ALIGNED DIPOLAR HARD RODS
phase diagram of~moderately polar! Stockmayer fluids with
or without an applied field.

A minimum amount of isotropic attractive energy th
appears necessary to stabilize equilibria between isotr
phases in zero field, at least in three dimensions@33,34,41#.
~Whether the same effect is present in a quasi-tw
dimensional model, remains an open question@42#.! Yet
there are other ways to inhibit chain formation while reta
ing the basic model of a repulsive hard or soft core p
dipolar interaction. The simplest of these is to decrease
depth of the head-to-tail energy minimum relative to th
corresponding to antiparallel dipoles by stretching the sph
into a rod along the direction of the dipole moment. M
Grother and Jackson@43# have simulated a fluid of dipola
hard spherocylinders and found an island of LV coexiste
when the two minima are nearly equal, i.e., for length-
breadth ratios 0.19&L/D&0.27 ~they are equal forL/D
521/321'0.26) @44#. Longer spherocylinders again form
chains, or rather ‘‘ribbons,’’ where nearest neighbors
now approximately antiparallel. This suggests that on
chaining is suppressed by making the interaction poten
‘‘less anisotropic,’’ phase separation comes into play~a more
detailed investigation of the competition between ph
separation and aggregation in the DHS fluid is reported
@45#!.

Coexistence between low-density phases oforderedDSS
chains without additional attraction does nonetheless ob
if a strong field is applied@46#. This phase separation is ver
unusual is several ways. First, in contrast to LV equilibr
the ~reduced! densities of the two phases are close and v
low, r* ;0.0220.03. Moreover, their structures are al
similar and resemble a gas of fairly ordered dipole cha
We propose that the behavior of such a system can be q
tatively understood using a simple model of long dipo
rods. A dipolar chain in a strong field is similar to a rod~with
some flexibility perhaps! with dipoles distributed along its
axis. Thus we arrive at the simplest model of perfec
aligned dipolar hard rods that still preserves the main qu
tative features of the actual system of ordered dipole cha

Now let us consider the possibility of phase separation
a fluid of strongly dipolar rods in a strong external field. A
mentioned above, without a field the rods form ribbons w
antiparallel nearest neighbors. However, there will be a c
cal field that destroys the ribbons because even at short
tances the interaction between two antiparallel dipoles
nd
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be weaker than that of each of them with the field. Furth
more, if the rods are long enough, the head-to-tail minim
can be made very weak, even for very strong dipoles. He
long polar rods do not form any chains or ribbons in a s
ficiently strong external field. It will be shown below that i
this case and under appropriate boundary conditions,
long-range character of the dipole-dipole interaction giv
rise to an effective attraction between rods that depends
particle shape@47# and could be the driving force of th
instability of the homogeneous fluid relative to two phases
aligned rods. Clearly, the effect should be qualitatively t
same for all rod shapes and all distributions of~longitudinal!
dipoles therein, but as we shall see, quantitative differen
can be important. We argue that the same effect should
present in the system of ordered dipole chains.

In this paper we investigate the above scenario and
cuss its relevance to the phase separation of the DSS flu
an applied field. In Sec. II we present our theory and str
the need for a correct choice of boundary conditions wh
dealing with electrostatic forces. Section III contains our
sults for the fluid phase equilibria of~i! hard ellipsoids with
central dipoles,~ii ! hard spherocylinders with central dipole
and~iii ! hard spherocylinders with equispaced dipoles alo
their long axes: Although the qualitative picture is the sa
in all three cases, there are important quantitative diff
ences. In particular, we shall argue that~iii ! is relevant to the
problem of the phase behavior of DSSs in a field and t
relaxing the assumptions of perfect orientational order a
infinite particle rigidity leads to no substantial changes.
nally, in Sec. IV we conclude with some critical remarks
our models and approach, as well as their relation to r
ferrofluids.

II. THEORY

A. General formulation

The interaction potential between two point dipoles e
bedded in hard rods~HRs! is

f~x1 ,x2!5f ref~x1 ,x2!1fdd~x1 ,x2!, ~1!

where xi denotes the set of positionr i and orientationai
coordinates of particlei , f ref(x1 ,x2) is a short-ranged refer
ence potential incorporating the effects of steric repulsi
and
fdd~x1 ,x2!5H 2
m2

r 12
3 @3~m̂1•u12!~m̂2•u12!2m̂1•m̂2# if r 12P” Vexc~v1 ,v2!

0 otherwise

~2!
is the dipole-dipole interaction@48#. In Eq. ~2!, m̂i5mi /m is
a unit vector along the dipole momentmi of particle i , u12
5r12/r 12 is a unit vector along the intermolecular axis, a
Vexc(v1 ,v2) is the excluded volume of the two particles.
the spirit of perturbation theory, the free energy~FE! can be
written as
F@r~x!#5F ref@r~x!#1Fdip@r~x!#, ~3!

whereF ref@r(x)# is the FE of a fluid of densityr(x) char-
acterized by the pair potentialf ref(x1 ,x2) andFdip@r(x)# is
the dipolar contribution.
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The natural reference system is the fluid of nonpolar H
whose FE we approximate by the Parsons-Lee expres
@49,50#. This is formally a partial resummation of highe
order terms in the virial expansion of the FE and has b
tested recently against extensive computer simulations
hard spherocylinders~HSCs! of L/D<5 @51# and hard ellip-
soids~HEs! of 5<L/D<20 @52#. Agreement is nearly quan
titative, even at high densities, for the former and good
the latter. For very largeL/D, the Parsons-Lee expressio
reduces to Onsager’s second-virial approximation, which
known to be asymptotically exact for the isotropic-nema
transition densities in the limitL/D→` and correctly de-
scribes the transition in that limit, as shown by Bolhuis a
Frenkel@53#.

B. Perfectly aligned hard rods

A reasonable simplification that nevertheless preser
the essentials of the problem under study is to assume pe
orientational order. This is common practice whene
strong alignment is expected as in, e.g., studies of
nematic–smectic-A transition@54#; we shall see below how
it can be relaxed. We thus have

b f ref5b
F ref

V
5r ln~L3r!2r1r

4j23j2

~12j!2
, ~4!

where V is the volume of the system,r is the density,b
5(kBT)21, L is the de Broglie thermal wavelength, andj
5vHRr is the packing fraction, withvHR the volume of the
HR. Note that this is exactly the same as the free ene
density~FED! of a fluid of hardspheresof the same density

The dipolar interaction between rods is most easily ta
into account in the mean-field~MF! approximation. Since we
are dealing with a polarized fluid, the MF contribution to t
FED does not vanish. It is, in the case ofn identical longi-
tudinal dipoles per rod,

f dip5
1

2
r2m2 (

i , j 51

n E 123~ui j • ẑ!2

r i j
3 H~r i j 2J i j ! dr i j ,

~5!

whereH(x) is the step function@H(x)51 if x,0 and zero
otherwise#, r i j is the vector connecting thei th dipole in rod 1
with the j th dipole in rod 2,r i j 5ur i j u, ui j 5r i j /r i j , ẑ is the
unit vector in thez direction, which we have taken to b
along the long axes of the HRs, andJ i j is the distance of
minimum approach between the centers of two HRs. T
last quantity is a function of the relative orientation of t
intermolecular vector and of the direction of alignmentẑ,
J i j 5J i j (ui j • ẑ).

At this stage, the reader’s attention is drawn to the f
that the particularly simple forms of Eqs.~4! and ~5! are a
consequence of the assumption of perfect orientational or
In general, the FE is afunctionalof the orientational distri-
bution function~ODF! describing the degree of alignment
the system and minimization with respect to the ODF
therefore also required. We shall return to this point late

It is convenient to separate the dipolar contribution to
FED, f dip , into short- and long-range parts, the latter depe
s
on
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ing on system size, shape, and boundary conditions. Th
accomplished, as in our previous papers@39,47#, by simply
adding to and subtracting from Eq.~5! the integral of the
dipole-dipole interaction without the steric cutoff, when
we obtain

f dip5
1

2
r2m2 (

i , j 51

n E 123~ui j • ẑ!2

r i j
3 @H~r i j 2J i j !21# dr i j

2
1

VE E•P dr1
1

2VE P•~E2E0! dr , ~6!

whereE0 is an external field,E is the field in the medium,
andP5rmẑ is the polarization. These quantities are relat
by E5E024pDP, whereD is the depolarization factor.

Next, we need to specify the boundary conditions, wh
in a real experiment can be imposed by placing the sam
between the plates of a capacitor. Three possibilities n
arise. First, one may merely connect the plates together;
electric potential is uniform throughout the sample andE
50. This is equivalent to ‘‘embedding the sample in a co
ducting medium’’ sinceE054pDP, i.e., the sample polar
izes in such a way as to cancel the external field everywh
Second, one may apply a constant potential difference to
plates by connecting them to the poles of a battery. T
corresponds to fixingE inside the sample, butE0 is now
unknown, as charges flow between the battery and the
pacitor plates to keep the field constant after the medium
been polarized. Third, one can disconnect the plates and
some charges on them~in practice, adjust some external fie
sources outside the sample!, in which caseE0 is fixed, butE
is unknown, because it depends on what is going on ins
the sample. By definition,E0 is produced by external charge
that are not part of the material, i.e., it is the field that wou
exist at a given point if the dielectric sample were remov
It is important to stress that for a sample of arbitrary sha
one cannot fix simultaneouslyE andE0.

Following Zhang and Widom@55# and Groh and Dietrich
@56#, we consider a needle-shaped sample, for whichD50
and a uniformly polarized state is allowed in zero appli
field, and embed it in a conducting medium. NowE50 and
the last two terms on the right-hand side of Eq.~6! vanish.
The first term, however, is important since it represents
effectiveattractionbetween rods. This is an integral over th
excluded volume of two parallel rods. We shall consid
three different geometries.

~i! Long HEs of major axis L and minor axis D wit
central point dipoles (HE,1):vHE5(p/6)DL2. From@57# we
get, in the limitL/D@1,

f dip
HE,1'2

8p

9
r2m2

D

L
. ~7!

~ii ! Long HSCs of length L and diameter D [44] wit
central point dipoles (HSC,1). The excluded volume is now
a spherocylinder of length 2L and diameter 2D:
vHSC5(p/6)D31(p/4)LD2. Evaluation of the integral in
Eq. ~6! ~with n51) then proceeds as follows. Start by notin
that the interaction between two dipolesm1 and m2 has a
divergence structure; indeed, it can be written in the form
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fdd~12!5
m1•m223~m1•u12!~m2•u12!

r 12
3

5¹•S 2m1

u12•m2

r 12
2 D 5¹•X. ~8!

This can be transformed into a surface integral using Gau
theorem. In particular, for spherical particles withm15m2

5mi ẑ, it reduces to

E
21

1

d~cosu!E
0

2p

df ~s•m!~u12•m!52pm2E
21

1

dx x2

5
4p

3
m2, ~9!

where s is the surface normal, (u,f) are the usual pola
coordinates, and we have used the fact thatu12•m5s•m
5cosu, asu12is. The familiar result2(4p/3)P2 is thus re-
covered. Now consider two aligned HSCs with dipoles
their centers:s•X50 on the cylindrical part of the limiting
surface becauseXim, and we are left with the integrals ove
the two hemispherical end caps. Their sum equals

4p~2D !2E
0

1

d~cosu! ~s•m!~ l•m!l 23, ~10!

where l is a vector from the center to the surface a
l 25 l25(2L)21(2D)212(2D)(2L)cosu, m• l5m(2L
12Dcosu). In the limit L/D@1, Eqs.~6! and ~10! yield

f dip
HSC,1'2pr2m2S D

L D 2

. ~11!

~iii ! Long HSCs of length L and diameter D, with
5L/D11 dipole moments placed at intervals D along the
long axes (HSC,n). The excluded volume is again a spher
cylinder of length 2L and diameter 2D. This is the same as
in the preceding case, except that we need to sum overi and
j from 1 to n in Eq. ~6! and instead of Eq.~10! we have for
each pair of dipoles (i , j ),

2p~2D !2E
0

1

d~cosu! cosucosa1 l 1
23

12p~2D !2E
0

1

d~cosu! cosucosa2 l 2
23, ~12!

where

cosa152L1j i2j j1Dcosu, ~13!

cosa252L2j i1j j1Dcosu, ~14!

l 15@~2L1j i2j j !
214D214D~2L1j i2j j !cosu#1/2,

~15!

l 25@~2L2j i1j j !
214D214D~2L2j i1j j !cosu#1/2.

~16!

If the number of dipoles in a HSC,n5L/D11 @44#, is even,
then jk5(k11/2)D, with k52n/2,2n/211, . . . ,n/2
’s

t

-

22,n/221, whereas ifn is odd, thenjk5kD and k52(n
21)/2,2(n21)/211, . . . ,(n21)/221,(n21)/2. The re-
sulting expression for f dip

HSC,n has been derived usin
MATHEMATICA ; as it is extremely long and complex for larg
n, we do not give it here but instead write it in the form

f dip
HSC,n52

p

2
r2m2F~L/D ! ~17!

and discuss the behavior ofF(L/D) below.
In all three cases,f dip is negative; hence for sufficiently

strong dipoles, the attraction contribution~11! can be larger
thankBT and bring about separation into two phases~‘‘liq-
uid’’ and ‘‘vapor’’ ! of aligned dipolar HRs. In Fig. 1 we plo
F(L/D) vs L/D; note that, whereas in cases~i! and ~ii ! the
dipolar contribution to the free energy tends to zero asL/D
increases, in case~iii ! it approaches a constant value.

The full FED is nowf 5 f ref1 f dip , wheref ref is given by
Eq. ~4! and f dip by Eqs. ~7!, ~11!, or ~12!, as appropriate.
There are only three independent parameters, namely,
packing fraction j, the dimensionless dipolar streng
rm2/kBT, and the anisotropy of the HR,L/D. An instability
will set in when ]2f /]r250, which yields, forj!1 ~low
densities! andL/D@1 ~long thin rods!,

j2118'
32

3
lS D

L D 3

~HE,1!, ~18!

j2118'8lS D

L D 3

~HSC,1!, ~19!

j2118'4l
D

L
F~L/D ! ~HSC,n!, ~20!

where we have defined the reduced dipole momentl
5m2/kBTD3. Remarkably, theD/L dependence of the spin
odal packing fraction is the same for both HEs and HSCs

FIG. 1. Elongation dependence of the geometric part of the
polar contribution to the FED of a fluid of HSCs withn5L/D11
dipole moments along their axesf dip

HSC,n @see Eq.~17!#. The dashed
line is the conjectured asymptotic behaviorF(L/D→`)59/4 and
the asterisk is the result for spheresF(0)54/3.
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spite of the different functional forms of Eqs.~7! and~11!. If,
e.g.,j;0.1 andL;5D, the above conditions are fulfilled b
taking l;210 ~HE,1!, l;250 ~HSC,1!, or l
;0.2 (HSC,n). In all three cases the dipolar interaction e
ergy in the head-to-tail configurationm2/L3&2kBT, is rela-
tively weak and does not create chains. Note that it is
mensely more favorable to use a spherocylinder carryin
number of dipoles proportional to its length; for single ce
tral dipoles, the ellipsoidal shape is marginally preferable

C. Effect of imperfect order and flexibility

In order to make closer contact with simulation, we ne
to take into account that the dipole chains seen in@46# are
neither perfectly straight nor perfectly ordered. This is m
easily done within our theory of ‘‘dipolar living polymers’
@39#. Assuming all chains to be of the same lengthn5L/D
11, the FED of the spatially uniform fluid is now~same
boundary conditions as in preceding subsection!

f @r, f̂ ~v!#5kBTr@ ln~L3r!21#2kBTr~n21!S0

1
3nkBTr

8l E dv
@¹v f̂ ~v!#2

f̂ ~v!

1n2kBTr2D3

12
3

4
j

~12j!2

3E dv1dv2 f̂ ~v1!using12u f̂ ~v2!

1 f dip
chain,n@r, f̂ ~v!#, ~21!

where S05 ln@pD3exp(2l)/18l3# is the energy of a chain
bond, f̂ (v) is the ODF,g(12)5cos21(v1v2), and we have
implemented the Parsons-Lee approximation to the~now
angle-dependent! excluded volume of two hard bodies. Ca
culation of the dipolar contributionf dip

chain,n now involves in-
tegrating the dipole-dipole interaction over the orientatio

FIG. 2. Phase diagrams of aligned dipolar HEs~solid lines! and
HSCs~dashed lines! with central longitudinal dipoles. See the te
for details.
-

-
a

-

d

t

-

dependent excluded volume of two HSCs. Althou
numerically feasible@58#, this is a rather cumbersome tas
furthermore, we expect the degree of order to remain high
we just replacef dip

chain,n by f dip
HSC,n @Eq. ~17!#, the same as for a

perfectly aligned fluid.
For simplicity, we opted for using the simple Gaussi

approximation of Odijk for the ODF@59#, suitably adapted to
describe a fluid with polar order:

f̂ G~v!5H Ae2au2/2 if 0<u<
p

2

0 if
p

2
,u<p,

~22!

whereA is a constant andu is the polar angle ofv. This is
reasonable in the limit of strong alignment, which we exp
to be the case. Moreover, it has been shown that in this lim
the resulting thermodynamics is very good, although the
act ODF deviates substantially from the Gaussian functio
form @7,60#. Normalization then requiresA.a/4p and we
also obtain

E dv

F ] f̂ G~u!

]u
G2

f̂ G~u!
.2a, ~23!

E dv1dv2 f̂ G~v1!using12u f̂ G~v2!.Ap

a
, ~24!

h15E dv P1~cosu! f̂ G~v!.12
1

a
, ~25!

h25E dv P2~cosu! f̂ G~v!.12
3

a
, ~26!

whereh1 andh2 are the polar and nematic order paramete
respectively. The reduced FED is then

FIG. 3. Phase diagrams of aligned HSCs withL/D11 equally
spaced longitudinal dipoles. The asterisk is Stevens and Gre
simulation datum@46#. See the text and Table I for details.
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TABLE I. Critical densities and critical temperatures for different particle elongations. The simulation~sim! data are those pertaining t
the strongest field in Table I of@46#. Theory,rigid, refers to perfectly aligned HSCs; theory,flexible, refers to imperfectly aligned chains
the text for details.

L/D rc* ~sim! rc* ~theory,rigid! rc* ~theory,flexible! tc ~sim! tc ~theory,rigid! tc ~theory,flexible!

5 0.0293 0.0347 0.058919 0.042057
10 0.0156 0.0169 0.035301 0.019352
20 0.00175 0.00804 0.00810 0.168 0.019506 0.008025
50 0.00328 0.00301 0.008312 0.002285
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f ~r,a!5kBTr@ ln~L3r!21#2kBTr~n21!S01
3nkBTar

4l

1n2kBTr2D3
12 3

4 j

~12j!2Ap

a
2

p

2
r2m2F~L/D !.

~27!

Minimization with respect toa yields

a5FAp

6
nr

423j

~12j!2G2/3

, ~28!

whence we can write the equilibrium FED as

f ~r!5kBTr@ ln~L3r!21#2kBTr~n21!S0

1
3

2H 3p

32l
n5r5F 423j

~12j!2G 2J 1/3

2
p

2
r2m2F~L/D !.

~29!

III. RESULTS

Phase boundaries can now be calculated by equating p
sures and chemical potentials; all results are in terms of
reduced densityr* 5rD3. Figure 2 shows the phase dia
grams of HRs withonecentral point dipole and elongation
L/D55, 10, and 20~note the logarithmic-linear scale!.
Clearly, increasing the elongation destabilizes the pha
separated state and lowers the critical density~as would be
expected from Onsager theory@61#!. This is consistent with
the dipolar contribution to the FE@Eq. ~11!# going to zero as
D/L→0. The critical and coexistence densities are lower
the case of HEs, reflecting the different scalings of the p
ticles’ proper volumes.

In Stevens and Grest’s simulations, the dipole cha
align along the field and are fairly straight if the field
strong ~Fig. 3 in Ref. @46#!. We associate one such cha
with our model~iii !, i.e., a dipolar HSC of~total! length L
1D @44# of the order of the linear dimensionL of their
simulation box, and diameterD5s, their molecular diam-
eter, withn5L/D11 dipole moments placed at intervalsD
along its axis and directed longitudinally. In Fig. 3 w
present a sequence of phase diagrams of this system~note
again the logarithmic-linear scale and contrast with Fig.!;
our critical temperaturestc51/lc and densitiesrc* are com-
pared with Stevens
es-
e

e-

n
r-

s

and Grest’s in Table I. The density of chains, to be compa
with the HSC density in our system, is the density of p
ticles reduced bys/L5(L/D11)21. TakingL/s'20, we
predict a critical density about 5 times higher than seen in
simulations, while the reduced critical temperature is off b
factor ;10. In view of all the approximations and simplifi
cations involved, this is not discouraging. It is notewort
that tc still goes down with increasingL/D, albeit more
slowly than in the case of a single central dipole.

So far we have dealt only with the highly idealized syste
of perfectly rigid, perfectly aligned bodies. On physic
grounds, one expects that unfreezing the shape and an
degrees of freedom will render the two coexisting pha
more alike and also more difficult to order, thereby depre
ing the critical temperatures and raising the critical densit
This is indeed borne out by the theoretical treatment of S
II C; see Fig. 4 and Table I~within the present theory, the
critical density is only weakly affected!. Yet it is important
to realize that the approximations employed are only valid
long as the ODF remains sharply peaked, i.e., ifa@1 in
either phase. Becausea is a fast-varying function of the
density@see Eq.~28!#, we find ourselves restricted to a rath
narrow temperature range around the critical point. The
havior of the orientational order parametersh1 and h2 is
illustrated in Fig. 5 for the same systems as in Fig. 4. N
that the polar order parameterh1 is always greater thanh2,
as follows from Eqs.~25! and ~26!, and was also found in
simulations of the ferroelectric phase of DSSs@62,63# or
DHSs @36#.

FIG. 4. Phase diagrams of aligned flexible HSC withL/D11
equally spaced longitudinal dipoles. The asterisk is Stevens
Grest’s simulation datum@46#. See the text and Table I for details
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IV. CONCLUSIONS

We have investigated three different aligned dipolar h
rod fluids and in all cases found a coexistence between l
density liquid and vapor phases that is driven solely by
long-range character of the dipolar forces. The transition
question is, in our theory, a consequence of thefinite length
of the rods. The critical temperaturetc approaches eithe
zero or a very small value asL/D→`. Our predictions re-
main qualitatively valid even if we allow for less-than
perfect orientational order and molecular flexibility. Th
‘‘phase separation in a field’’ recently seen in simulations
DSSs might then be explained as a finite-size effect: T
critical point would likely shift to lower and lower densitie
on increasing the system size, which imposes an artifi
upper bound on chain lengths. Further evidence in this di
tion is provided by the fact that the number of chains co
tained in either of the simulation boxes is quite small@46#
~Fig. 3!.

However appealing the above interpretation may appea
number of points are in order. First, there is the question
quantitative agreement between theory and simulation.
theory overestimates the critical density and underestim
the critical temperature, even if the effects of chain flexibil
and imperfect orientational order are taken into account. T
suggests that there is an additional source of attractio
operation. One likely candidate would be the fluctuatio
induced force of Halsey and Toor@64,65#: Being a one-
dimensional structure, a chain will experience strong fluct
tions due to instantaneous concentration or rarefaction o
constituent dipole moments. The coupling between the
sulting fluctuations of the electric field in different chain
gives rise to an energy of attraction. Note, however, that
latter scales withkBT and consequently cannot,per se, yield
a critical point.

Second, we have treated the dipolar interaction in the
approximation and thus forfeited a proper description of
short-range repulsion between parallel rods. One way to
this into account would be to define an effective diameter
a rodDeff by requiring that the dipolar interaction energy

FIG. 5. Orientational order parametersh1 ~solid lines! and h2

~dashed lines! for the same systems as in Fig. 4@see Eqs.~25! and
~26!#.
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two parallel rods at separationDeff be of the order ofkBT,
whenceDeff;(bm2)1/3. The resultingsmallereffective elon-
gationL/Deff would shiftbothtc andrc* upward, as follows
from the trends in Figs. 2 and 3, and therefore not necess
improve the overall quantitative agreement. Still, the qua
tative picture would not change.

Third, we have replaced a string of spheres by their
veloping convex body and consequently neglected the at
dant short-range positional correlations. These do not s
to play any substantial role in Stevens and Grest’s simu
tions, but have been invoked to explain the ‘‘chain bu
dling’’ phenomenon seen in simulations of ferromagne
particles @66,67# ~which, however, occurs at much highe
densities,r* ;0.3). Indeed, Halsey and Toor@64,65# have
shown that the discrete character of the distribution of
poles within chains gives rise to an attractive interaction t
decays exponentially with interchain separation.

Finally, it is necessary to examine any relation that mig
exist between the coexistence of two phases of chains
served by Stevens and Grest and the paranematic-nem
transition of semiflexible chains in an applied field inves
gated by Khokhlov and Semenov@68#. It is known from the
work of the latter authors that semiflexible chains will ord
nematically at a volume fractionf;10(d/ l ), whered and l
are, respectively, the diameter and the persistence length
chain @69,70#. This has been confirmed~semiquantitatively!
by recent simulations of off-lattice polymers in two and thr
dimensions@71,72#. However, the simulated phase equilibr
of chains occur at very low reduced densities~of spheres!, of
the order of 0.04. At such low densities, nematic order
could only take place if the chains were much stiffer a
much longer than they actually are. First, assuming, as
fore,d;s, one can readily estimate the necessary chain p
sistence length to bel *250s, i.e., the chains must be fairly
straight on the scale of the simulation box, which is not t
case@73#. Second, in the fluid of sufficiently stiff chains
phase separation in zero field is predicted, which is not
served; this can only be understood if one assumes tha
chains become completely flexible on switching off the fie
which appears unlikely. Third, the width of the two-pha
region as calculated by Khokhlov and Semenov is about 1
of the coexisting densities, whereas in the simulations th
differ by a factor of 2.~However, note that the two-phas
region may broaden considerably once polydispersity
been properly taken into account, while the lower-dens
phase boundary would be left very much unchanged@74#.! In
view of the foregoing arguments, we have to rule out t
possibility of spontaneous nematic ordering of the chains
the system under consideration. We conclude that ther
not, to our knowledge, any other, even qualitative, mec
nism for the phase separation reported by Stevens and G
than the one discussed in this paper.

The question remains of whether DSSs or dipolar HRs
good models for real ferrofluids, which may exhibit a liqui
vapor coexistence even in the absence of an applied
@75,76#; in view of the above, it is tempting to speculate th
solvent effects, short-range interactions due to particle c
ings @34#, induced-dipole forces, or changes in particle sha
@55#, may play a crucial role in the stabilization of suc
phase equilibria.
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